Parametric Maxflows for Structured Sparse Learning with Convex Relaxations of Submodular Functions

نویسندگان

  • Yoshinobu Kawahara
  • Yutaro Yamaguchi
چکیده

The proximal problem for structured penalties obtained via convex relaxations of submodular functions is known to be equivalent to minimizing separable convex functions over the corresponding submodular polyhedra. In this paper, we reveal a comprehensive class of structured penalties for which penalties this problem can be solved via an efficiently solvable class of parametric maxflow optimization. We then show that the parametric maxflow algorithm proposed by Gallo et al. [17] and its variants, which runs, in the worst-case, at the cost of only a constant factor of a single computation of the corresponding maxflow optimization, can be adapted to solve the proximal problems for those penalties. Several existing structured penalties satisfy these conditions; thus, regularized learning with these penalties is solvable quickly using the parametric maxflow algorithm. We also investigate the empirical runtime performance of the proposed framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning with Submodular Functions: A Convex Optimization Perspective

Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analy...

متن کامل

Structured sparsity-inducing norms through submodular functions

Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turned into a convex optimization problem by replacing the cardinality function by its convex envelope (tightest convex lower bound), in this case the l1-norm. In this paper, we investigate m...

متن کامل

Structured Convex Optimization under Submodular Constraints

A number of discrete and continuous optimization problems in machine learning are related to convex minimization problems under submodular constraints. In this paper, we deal with a submodular function with a directed graph structure, and we show that a wide range of convex optimization problems under submodular constraints can be solved much more efficiently than general submodular optimizatio...

متن کامل

A Convex Formulation for Learning Scale-Free Networks via Submodular Relaxation

A key problem in statistics and machine learning is the determination of network structure from data. We consider the case where the structure of the graph to be reconstructed is known to be scale-free. We show that in such cases it is natural to formulate structured sparsity inducing priors using submodular functions, and we use their Lovász extension to obtain a convex relaxation. For tractab...

متن کامل

A unified perspective on convex structured sparsity: Hierarchical, symmetric, submodular norms and beyond

In this paper, we propose a unified theory for convex structured sparsity-inducing norms on vectors associated with combinatorial penalty functions. Specifically, we consider the situation of a model simultaneously (a) penalized by a set-function defined on the support of the unknown parameter vector which represents prior knowledge on supports, and (b) regularized in `pnorm. We show that each ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1509.03946  شماره 

صفحات  -

تاریخ انتشار 2015